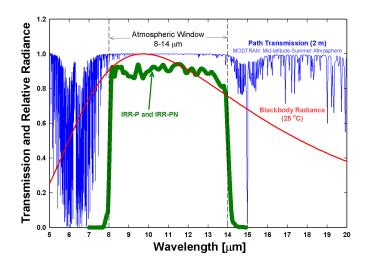


Wiring Diagram for IRR-P and IRR-PN


	Red	High side of differential channel (positive thermopile lead)
	Black	Low side of differential channel (negative thermopile lead)
free .	Clear	Analog ground (thermopile ground)
	Green	Single-ended channel (positive thermistor lead)
	Blue	Analog ground (negative thermistor lead)
-	White	Excitation channel (excitation for thermistor)

sample programming and instructions available online: www.apogee-inst.com/programs

1

The 8-14 μ m window of the IRR models corresponds to the atmospheric window. This minimizes the effects of water bands below 8 μ m and above 14 μ m.

Mounting

The sensor's FOV (22° or 18°) determines the size of the target area viewed by the detector. This is also influenced by the height and angle at which you mount your IRR. The FOV extends unbroken until it reaches a solid target. Check to be sure you are not detecting unwanted areas within your target diameter, such as the sky.

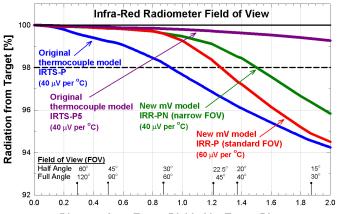
Accuracy and Calibration

During calibration the sensor body temperature ranges from -5 to 45 $^{\circ}$ C at 10 $^{\circ}$ C increments. At each step the target temperature ranges from +20 to -15 $^{\circ}$ C relative to the sensor body temperature.

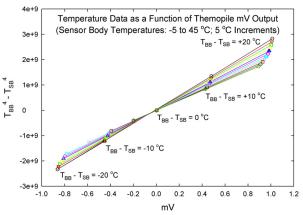
The output of IRR sensors follows the fundamental physics of the Stefan-Boltzmann Law, which states that radiation transfer is proportional to temperature raised to the fourth power (T^4). A version of the S-B equation proposed by Kalma et al. (Calibration of small infra-red surface temperature transducers, Ag. For. Met., 1988) is used to calibrate the sensors taking into account the effect of sensor body temperature (see graph shown above-right):

$T_{T}^{4} - T_{D}^{4} = m \cdot mV + b$

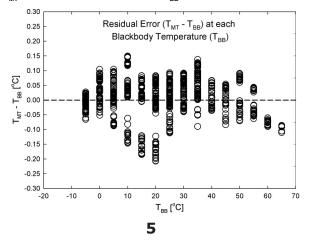
where T_{τ} [K] is the target temperature (blackbody cone temperature during calibration), T_{D} [K] is the detector temperature, mV is the millivolt output of the detector and serves as a surrogate for emitted energy, m is the slope and b is the intercept. The coefficients m and b are derived during sensor calibration and are functions of the detector temperature.


To make temperature measurements, the equation can be rearranged to solve for T_{τ} , which is calculated from the measured values of T_{D} and mV, and the calculated values of m and b (calculated from T_{D}):

$$T_{T} = (T_{D}^{4} + m \cdot mV + b)^{1/4}$$
4


Field of View

Field of View (FOV) is reported as the halfangle of the apex of the cone formed by the target (cone base) and the detector (cone apex). The target is a circle from which 98% of the radiation being viewed by the detector is being emitted.


Model IRR-P half-angle = 22.0° Model IRR-PN half-angle = 18.0°

Distance from Target Divided by Target Diameter

The graph below shows the residual error $(T_{MT} - T_{BB})$ where T_{MT} is measured temperature and T_{BB} is blackbody temperature).

Specifications

		Precision (IRR-P)	Precision Narrow (IRR-PN)		
Field of view		22° half angle	18° half angle		
Output	Target temp.	60 μV per °C difference from sensor body	40 µV per °C difference from sensor body		
	Sensor body temp.	0-2500 mV	0-2500 mV		
Accuracy	-10 to 65 °C	±0.2 °C absolute accuracy	±0.2 °C absolute accuracy		
		±0.1 °C uniformity	±0.1 °C uniformity		
		±0.05 °C repeatability	±0.05 °C repeatability		
	-40 to 70 °C	±0.5 °C absolute accuracy	±0.5 °C absolute accuracy		
		±0.3 °C uniformity	±0.3 °C uniformity		
		±0.1 °C repeatability and u	±0.1 °C repeatability and uniformity		
Optics		Germanium lens	Germanium lens		
Wavelength ra	ange	8-14 µm (corresponds to atmospheric window)			
Response time		< 1 second to changes in	< 1 second to changes in target temperature		
Input power 2.5 V		2.5 V excitation	2.5 V excitation		
Operating env	vironment		-55 to 80 °C; 0 to 100 % RH (non-condensing) Water resistant, designed for continuous outdoor use		
Datalogger ch	nannels	1 differential (detector) and	1 differential (detector) and 1 single-ended (thermistor)		
Cable			4.5 meters twisted, shielded 4 conductor wire with Santoprene casing. Extra cable ^{\$} 2.95 per meter.		
Dimensions		6 cm long by 2.3 cm diam	6 cm long by 2.3 cm diameter		
Mass		190 g	190 g		
Warranty		1 year parts and labor	1 year parts and labor		

